The influence of a human embryonic stem cell-derived microenvironment on targeting of human solid tumor xenografts.
نویسندگان
چکیده
The awareness of the important role that the surrounding tissue microenvironment and stromal response play in the process of tumorigenesis has grown as a result of in vivo models of tumor xenograft growth in immunocompromised mice. In the current study, we used human embryonic stem cells in order to study the interactions of tumor cells with the surrounding microenvironment of differentiated human cell tissues and structures. Several cancer cell types stably expressing an H2A-green fluorescence protein fusion protein, which allowed tracking of tumor cells, were injected into mature teratomas and developed into tumors. The salient findings were: (a) the observation of growth of tumor cells with high proliferative capacity within the differentiated microenvironment of the teratoma, (b) the identification of invasion by tumor cells into surrounding differentiated teratoma structures, and (c) the identification of blood vessels of human teratoma origin, growing adjacent to and within the cancer cell-derived tumor. Mouse embryonic stem cell-derived teratomas also supported cancer cell growth, but provided a less suitable model for human tumorigenesis studies. Anticancer immunotherapy treatment directed against A431 epidermoid carcinoma cell-related epitopes induced the complete regression of A431-derived tumor xenografts following direct i.m. injection in immunocompromised mice, as opposed to corresponding tumors growing within a human embryonic stem cell-derived microenvironment, wherein remnant foci of viable tumor cells were detected and resulted in tumor recurrence. We propose using this novel experimental model as a preclinical platform for investigating and manipulating the stromal response in tumor cell growth as an additional tool in cancer research.
منابع مشابه
Extract of mouse embryonic stem cells induces the expression of pluripotency genes in human adipose tissue-derived stem cells
Objective(s): In some previous studies, the extract of embryonic carcinoma cells (ECCs) and embryonic stem cells (ESCs) have been used to reprogram somatic cells to more dedifferentiated state. The aim of this study was to investigate the effect of mouse ESCs extract on the expression of some pluripotency markers in human adipose tissue-derived stem cells (ADSCs). Materials and Methods: Human A...
متن کاملDifferentiation of human embryonic stem cells into neurons
Human embryonic stem (ES) cells are undifferentiated pluripotent cells derived from the inner cell mass of blastocyst stage embryos. These unique cell lines have the potential to form virtually any cell type in the body and can be propagated in vitro indefinitely in an undifferentiated state. These cells are capable of forming embryoid bodies (EB) that contain cells from all three embryonic lin...
متن کاملDifferentiation of human embryonic stem cells into neurons
Human embryonic stem (ES) cells are undifferentiated pluripotent cells derived from the inner cell mass of blastocyst stage embryos. These unique cell lines have the potential to form virtually any cell type in the body and can be propagated in vitro indefinitely in an undifferentiated state. These cells are capable of forming embryoid bodies (EB) that contain cells from all three embryonic lin...
متن کاملCo-Transplantation of VEGF-Expressing Human Embryonic Stem Cell Derived Mesenchymal Stem Cells to Enhance Islet Revascularization in Diabetic Nude Mice
Background: Pancreatic islet transplantation has emerged as a promising treatment for type I diabetes. However, its efficacy is severely hampered due to poor islet engraftment and revascularization, which have been resulted to partially loss of transplanted islets. It has been shown that local delivery of vascular endothelial growth factor (VEGF) could accelerate transplanted islet revasculari...
متن کاملReprogramming by cytosolic extract of human embryonic stem cells improves dopaminergic differentiation potential of human adipose tissue-derived stem cells
The extract of pluripotent stem cells induces dedifferentiation of somatic cells with restricted plasticity. In this study, we used the extract of human embryonic stem cells (hESC) to dedifferentiate adipose tissue-derived stem cells (ADSCs) and examined the impact of this reprogramming event on dopaminergic differentiation of the cells. For this purpose, cytoplasmic extract of ESCs was prepare...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cancer research
دوره 66 7 شماره
صفحات -
تاریخ انتشار 2006